Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 36-42, 2022.
Article in Chinese | WPRIM | ID: wpr-940349

ABSTRACT

ObjectiveTo explore the effect and mechanism of Xiaojindan extract (XJD) on macrophage polarization. MethodLipopolysaccharide (LPS) and interleukin-4 (IL-4) were used to induce M1 and M2 polarization of RAW264.7 cells. The influence of 10-80 mg·L-1 XJD on cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide (NO) and interleukin-6 (IL-6) release was explored by Griess assay and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA expression of M1 and M2 macrophage markers was measured by real-time quantitative polymerase chain reaction (Real-time PCR), and the CD206+ expression was determined by flow cytometry. The activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway was analyzed by western blot. Result10-80 mg·L-1 XJD showed no marked cytotoxicity in LPS (0.5 mg·L-1)- or IL-4 (20 μg·L-1)-induced RAW264.7 cells. Compared with the control group, LPS significantly promoted the expression of M1 macrophage markers (P<0.01), including increased NO and IL-6 release (P<0.01) and upregulated mRNA expression of interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) (P<0.01). Compared with LPS-induced group, 20-80 mg·L-1 XJD decreased the release of NO and IL-6 in a dose-dependent manner (P<0.01), and similarly 10-80 mg·L-1 XJD suppressed the mRNA expression of IL-1β, iNOS, COX-2 and TNF-α (P<0.01). Compared with the control group, IL-4 obviously increased the expression of M2 macrophage markers (P<0.01), including increased CD206+ cell population and upregulated mRNA expression of arginine-1 (Arg-1), interleukin-10 (IL-10), interleukin-13 (IL-13) and transforming growth factor-β1 (TGF-β1). Compared with IL-4-induced group, 10-80 mg·L-1 XJD dose-dependently decreased CD206+ cell population (P<0.01) and inhibited the mRNA expression of Arg-1, IL-10, IL-13 and TGF-β1 (P<0.01). Western blot showed that XJD significantly downregulated the activation of PI3K/Akt pathway as compared to LPS- and IL-4-induced groups (P<0.05, P<0.01). ConclusionXJD significantly inhibited the macrophage polarization in the LPS- and IL-4-induced RAW264.7 cells by targeting PI3K/Akt pathway.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 141-149, 2022.
Article in Chinese | WPRIM | ID: wpr-940298

ABSTRACT

ObjectiveTo explore the mechanism of Shenxiong glucose injection (SGI) in inhibiting hydrogen peroxide (H2O2)-induced oxidative damage in H9c2 cells by tandem mass tags (TMT)-labeled quantitative proteomics. MethodH9c2 cells cultured in vitro were exposed to H2O2 for inducing oxidative damage. The cell viability was measured by cell proliferation and cytotoxicity assay (MTS), followed by peptide fractionation by high performance liquid chromatography (HPLC) and protein expression detection in H9c2 cells by ultrahigh performance liquid chromatography-mass spectrometry. MaxQuant (v1.5.2.8) was utilized for data retrieval, and the high-resolution mass spectrometry was conducted to screen out differentially expressed proteins, which were then subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. The protein expression levels of perilipin 2 (Plin2) and tropomyosin 1 (Tpm1) in cells were measured by Western blot. ResultThe spectral analysis yielded 48 608 specific peptide fragments and 5 903 quantifiable proteins. Compared with the model group,the SGI group exhibited 82 differentially expressed proteins,of which 22 were up-regulated and 60 were down-regulated. GO analysis results showed that the differentially expressed proteins were mainly involved in biological processes such as programmed cell death regulation,regulation of cell proliferation,cardiovascular system development, and cell migration. As revealed by KEGG analysis, these proteins were mainly related to peroxisome proliferator-activated receptor (PPAR),focal adhesion,phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt),and Ras-related protein 1 (Rap1) pathways. Western blot results demonstrated that compared with the model group,SGI significantly increased the Plin2 protein expression and decreased the Tpm1 protein expression (P<0.01),consistent with the proteomics results. ConclusionSGI may inhibit cell apoptosis and antagonize H2O2-induced cell oxidative damage by regulating PPAR,focal adhesion,PI3K/Akt and Rap1 pathways,which should be further verified by subsequent experiments.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 164-171, 2021.
Article in Chinese | WPRIM | ID: wpr-906313

ABSTRACT

Objective:To explore the potential molecular mechanism of Nelumbinis Plumula alkaloids (NAPs) in the prevention and treatment of non-small cell lung cancer (NSCLC) based on network pharmacology and cell experiment. Method:The main active components of NAPs were obtained by searching Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM), and their main targets were predicted and analyzed by employing Swiss Target Prediction. The main target genes of NSCLC were retrieved from GeneCards, Online Mendelian Inheritance in Man (OMIM) and DrugBank databases. The resulting common targets were imported into STRING platform for constructing the protein-protein interaction (PPI) network, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis based on Database for Annotation, Visualization, and Integrated Discovery (DAVID). The NAPs-common target -pathway network was constructed by Cytoscape 3.7.1. After NSCLC cell line A549 was treated with isoliensinine, the cell morphology was observed under an inverted fluorescence microscope. The effect of isoliensinine on A549 vitality was detected by cell counting kit-8 (CCK-8) assay and the target protein changes were verified by Western blot. Result:The main active components for NAPs against NSCLC were lysicamine, liensinine, and isoliensinine. The phosphatidylinositol-3-kinase-protein kinase B (PI3K-AKT), RAS-related protein 1 (Rap1), epidermal growth factor family of receptor tyrosine kinases (ErbBs), and hypoxia inducible factor-1 (HIF-1) pathways were mainly involved for binding adenosine triphosphate (ATP) and regulating protein kinase activity. The main targets included protein kinase B-1 (AKT1), alpha catalytic subunit of phosphoinositol-3-kinase (PIK3CA), cyclin-dependent kinase 2 (CDK2), mitogen-activated protein kinase-1 (MAPK1), epidermal growth factor receptor (EGFR), adenosine triphosphate-binding cassette B1 (ABCB1), mammalian target of rapamycin (mTOR), tyrosine kinase (Src), Janus kinase 1 (JAK1), and G1-phase-specific gene cyclin-D<sub>1</sub> (CCND1). The <italic>in vitro</italic> cell experiment also revealed that isoliensinine down-regulated the expression of phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR) in a concentration- and time-dependent manner and inhibited the growth of A549 cells. Conclusion:NAPs exert the preventive and therapeutic effects against NSCLC through multiple components, multiple targets, and multiple pathways, especially the PI3K-AKT pathway.

SELECTION OF CITATIONS
SEARCH DETAIL